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The Capacity of the Arbitrarily Varying Channel 
Revisited : Positivity, Constraints 

IMRE CSISZAR AND PRAKASH NARAYAN, MEMBER, IEEE 

Abstract -A well-known result of Ahlswede asserts that the determinis- 
tic code capacity of an arbitrarily varying channel (AVC), under the 
average error probability criterion, either equals its random code capacity 
or else is zero. A necessary and sufficient condition is identified for 
deciding between these alternatives, namely, the capacity is zero if and 
only if the AVC is symmetrizable. The capacity of the AVC is also 
determined with constraints on the transmitted codewords as well as on the 
channel state sequences, and it is demonstrated that it may be positive but 
less than the corresponding random code capacity. A special case of the 
results resolves a weakened version of a fundamental problem of coding 
theory. 

I. INTRODUCTION 

RBITRARILY varying channels (AVC’s) were intro- A duced by Blackwell et al. [3] to model communica- 
tion channels with unknown parameters which may vary 
with time in an arbitrary and unknown manner during the 
transmission of a codeword. Formally, a (discrete memory- 
less) AVC is determined by a fa&ly { W(.  I-, s), s E Y }  of 
channels with (finite) input alphabet 5 and (finite) output 
alphabet ?Y, the individual channels in this family being 
identified by an index s E Y called the state. Thus 
W( ylx, s) is the probability that y E @Y is received given 
that 3 E 3 is transmitted and s E 9’ is the state of the 
channel. We shall assume that the set 9’ of possible states 
is also finite. For length-n sequences the probability of 
receiving y = (yl,. .  ., y,) E @Yn, when x = (x1;. ., x,) E 

5, is transmitted and s = (s~; a ,  s,) E 9’” is the chan- 
nel state sequence, is defined as 

n 

W “ ( Y l x , s )  = n w(Yklxk,sk). (1.1) 
k = l  

Arbitrarily varying channels afford a wide variety of 
challenging problems to information theorists. The coding 
problems for the AVC vary according to the kinds of 
permissible coding strategies and the nature of the perfor- 
mance criteria. Some of these problems are extremely 
difficult. For instance, Shannon’s famous zero-error prob- 
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lem [ l l ] ,  as observed by Ahlswede [l], is a special case of 
an AVC-capacity problem. The same is true of the funda- 
mental problem of coding theory concerning the largest 
possible rate of binary codes capable of correcting a fixed 
fraction of bit errors, as will be indicated in this paper. For 
a summary of the work on AVC‘s and for basic results, we 
refer the reader to Ahlswede [2], Wolfowitz [12], and 
CsiszPr-Korner [4]. Much of our terminology is adopted 
from Csiszhr-Korner [4]. 

In a previous paper (CsiszCr-Narayan [7]), we investi- 
gated the effects of various types of constraints on the 
transmitted or state sequences on the capacity of an AVC. 
The code was not permitted to depend on the states (i.e., 
both the encoder and decoder were completely ignorant of 
the actual state sequence); however, random codes (Le., 
correlated randomization in encoding and decoding) were 
permitted. Here we dispense with the last assumption and 
determine the capacity of the AVC for deterministic codes 
using, as the performance criterion, the average probability 
of error. In doing so, we consider constraints on individual 
sequences, for having solved this case, other types of 
constraints can be treated as in [7]. The capacity consid- 
ered in this paper is called the a-capacity in [4], as distinct 
from the capacity for the maximum probability of error 
performance criterion, called the m-capacity. It is a well- 
known fact that for an AVC, unlike for a simple (discrete 
memoryless) channel, these two kinds of capacity may 
differ. In particular, the a-capacity may be positive when 
the m-capacity is zero. An example due to Ahlswede [2] is 
the deterministic AVC with 5 = g = {0,1,2,}, 9 = { O , l } ,  
y = x + s modulo 3. For notational convenience we shall 
use the term “capacity” without further specification as 
referring to a-capacity. 

In the absence of any constraints, a celebrated result of 
Ahlswede [2] asserts that the capacity of an AVC either 
equals its random code capacity or else is zero. Unfor- 
tunately, as Ericson [9] remarks, many AVC‘s of practical 
importance are symmetric in the sense that 9- = 9, and 
W( ylx, x’) = W( ylx’, x )  for every (x, x’, y) ;  such AVC’s 
have capacity equal to zero. Reasonable models of real 
communication situations can then be obtained by impos- 
ing constraints on the sequence of channel states, and this 
may lead to a positive capacity. In this case, however, the 
proof technique of Ahlswede [2] does not work. In fact, 
our results will demonstrate that the capacity under a state 
constraint may be positive but less than the corresponding 
random code capacity. 

0018-9448/88/0300-Ol81$01.00 01988 IEEE 



182 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 2, MARCH 1988 

We first provide a new proof of the basic capacity 
theorem for the AVC, which also yields, as a new result, a 
necessary and sufficient condition for the capacity to be 
positive. Our proof employs the method of types, as devel- 
oped in Csiszhr-Korner [4] (following Csiszhr-Korner- 
Marton [6]).  A good codeword set is identified by plain 
random selection, using the bounding technique of 
Dobrushin-Stambler [8]. The latter, limited by a subopti- 
mal decoding rule, had determined the capacity of the 
AVC only under rather restrictive conditions. The main 
new idea in this paper consists of a more subtle decoding 
rule similar to that in Csiszhr-Korner [ 5 ] ,  which enables 
us to bound the error probability as in [5]. The result easily 
extends to the case when constraints are imposed on the 
codeword and state sequences. 

Our results are formally stated in Section I1 and proved 
in Section 111. Readers not interested in the details of 
proofs are advised to proceed from Section I1 to Section 
IV, where some interesting implications of the main results 
for a few simple cases are discussed. More examples and 
the Gaussian AVC will be treated elsewhere. 

11. PRELIMINARIES AND STATEMENT 
OF MAIN RESULTS 

We have adopted our terminology from Csiszhr-Korner 
[4]. In particular, all logarithms and exponentials are taken 
to the base 2. 

The message set of a code is identified as the set 
{l; - e ,  N } of positive integers, so that a length-n block 
code is given by a family of codewords xl; . -, x N ,  each 
%", and a decoder +: %" + (0,l; - -, N}. While zero is 
allowed as a decoder output for the sake of convenience, it 
always constitutes an error. The probability of error for 
message i ,  when this code is used on an AVC defined by 
( l . l ) ,  and the actual state sequence is given to be s E Y", 
equals 

4 , s )  = c W"( Ax,, 4,  (2.1) 
Y :  9 ( Y )  + 

and the average probability of error for a state sequence s 
is 

Definition I: A number R > 0 is called an achievable 
rate for the given AVC (for deterministic codes and aver- 
age probability of error criterion) if for every c > 0, S > 0, 
and sufficiently large n ,  length-n block codes exist with 

1 
- logN> R - 6 ,  max C(s) 16. (2.3) 
n S C P  

The maximum achievable rate is called the capacity of the 
AVC and is denoted by C. 

For 17 2 0, we define a family of joint distributions P,, 
of random variables X, S, and Y with values in 3, 9, 
and %, respectively, by 

q7 = { pxs,: ~ ( P x s , I I P x  x p s  x w )  17>. (2.4) 

Here D denotes (Kullback-Leibler) information diver- 
gence, and P x  X Ps X W denotes a joint distribution 
on 3 x Y x fY with probability mass function 
P x ( x ) P s ( s ) W ( y l x ,  s). In particular, Pxsr E q,, if and only 
if 

p x s , ( x ,  s, v )  = P X ( X ) P S ( S ) ~ ( Y l X ~  4. (2 -5 )  
Further, we define, for any distribution P on 3, the 
quantity 

I ( P )  = min I (  x A Y).  (2 .6)  
Y: Pxsy € 4 

for some S, with Px = P 

Proposition A (Ahlswede): The capacity of the AVC is 
either C = maxp I( P )  or else C = 0. 

A necessary and sufficient computable characterization 
of AVC's with C = 0 does not appear in the literature. The 
next theorem fills this hiatus; furthermore, we prove it 
without relying on Proposition A or on the fact (essentially 
used in Ahlswede's proof [2]) that maXp I( P )  is the ran- 
dom code capacity of the AVC. Note that maXp I( P )  > 0 
and C = 0 could well occur. Indeed, max I( P )  > 0 holds 
for many symmetric AVC's, e.g., for the AYC of Example 
2 in Section IV, whereas C = 0 always for a symmetric 
AVC. 

Definition 2: An AVC is symmetrizable if for some 
channel U: 3 + 9, 

c ~ ( Y l x , s ) ~ ( s l x ' )  = c W(YIX', s ) U ( s l x ) ,  
S € Y  S € Y  

for every x ,  x' ,  y. (2.7) 
Theorem I :  C > 0 if and only if the AVC is not sym- 

metrizable. If C > 0, then 

C =  maxI(P).  (2.8) 
P 

The terminology of Definition 2 is motivated by the fact 
that if a new AVC, with the set of states coinciding with 
the input alphabet, is defined by 

V(YlX,  x')  = c W ( y I x , s ) ~ ( s I x ' ) ,  
S € Y  

then (2.7) states that t h s  new AVC is symmetric. The 
necessity of nonsymmetrizability for C > 0 was observed 
by Ericson [9]. He also compared this necessary condition 
with the sufficient condition of Ahlswede [2], namely, that 
two distributions and P2 exist on the input alphabet 3 
such that for any pair of distributions Q, ,  Q 2  on the state 
space 9, 

C P i ( x ) Q i ( s ) W ( A x , s )  + C P ~ ( X ) Q ~ ( X ) W ( Y I X ,  
x ,  s x ,s  

for at least one y E ?V. 

Ericson's analysis led to the plausibility of this condition 
being, in general, strictly stronger than nonsymmetrizabil- 
ity, and therefore a necessary and sufficient condition for 
C > 0 could not be established. Note, however, that he did 
not actually prove Ahlswede's [2] sufficient condition to be 
stronger than nonsymmetrizability; nor do we. We need 
not address this question as nonsymmetrizability, a simple 
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condition whose verification involves only linear equa- 
tions, is proven to be both necessary and sufficient for 
c > 0. 

We observe that if the channel is nonsymmetrizable, 
then I ( P )  defined by (2.6) is positive for every P satisfy- 
ing P ( x )  > 0 for all x E %. Indeed, if I( P) were zero for 
such a P, then (2.6) implies the existence of a random 
variable S such that for Pxsy defined by (2.5), X and Y 
are independent. Thus by (2.5), CsE9W(yIx, s)P,(s) = 
P , ( y )  would not depend on x.  However, this implies 
symmetrizability of the channel in a trivial manner, with 
U ( .  Ix) = P,(.), not depending on x ,  which leads to a 
contradiction. 

We recall from [4] that the type of a sequence x =  
(x1; a ,  x , )  E 5" is a distribution P, on 9- where P,(x)  
is the relative frequency of x in x. Similarly, joint types 
are distributions on product spaces. For example, the joint 
type of three given sequences x E X", s E Y",  y E 9" is 
a distribution PX,,, on % X Y X g where Px,s,y(x,  s, y) is 
the relative frequency of the triple (x, s, y)  among the 
triples (x,,s,, y,) ,  i = l , - .  e, n.  

In the proof of Theorem 1 good codes are obtained by 
randomly selecting codewords xl; . 0 ,  x N  from the set of 
sequences of a fixed type; the key part consists of finding a 
suitable decoder $I. We use a decoder C#J defined as follows. 

Definition 3: Given the codewords x,, i = l ; .  -, N, let 
+( y) = i if and only if an s E 9" exists such that 

1) the joint type Px,,s,y belongs to %', (cf. (2.4)); 
2) for each competitor j f i ,  Le., such that Px,,st,y E V,, 

for some s' E 9'", we have I( XY A X'lS) I q,  where 
X, X', S, Y denote dummy random variables such 
that the joint type of (x,, x,, s, y) equals Pxrsr. 

If no such i exists, we set @( y)  = 0 (Le., declare an 
error). 

A main step of the proof of Theorem 1 will consist in 
showing that this decoding rule is unambiguous if 1) is 
sufficiently small. 

We observe that condition 1) is a joint typicality condi- 
tion, that is, we require that (x,, s, y )  be jointly typical for 
some s and for a joint distribution of the form (2.5). 
Dobrushin-Stambler [ 81 had employed a decoding rule 
based on similar joint typicality, but their method of 
eliminating ambiguities in decoding (by simply adopting 
the smallest i that satisfied the joint typicality condition) 
did not lead to definitive results. Our condition 2) is 
analogous to condition (4.10) in Csiszk-Komer [5], where 
I( Y A X'I XS) was required to be small; here, we addition- 
ally ask that I( X A X'lS) also be small. 

Let us now consider AVC's with input or state con- 
straints. As in Csisdr-Narayan [7], let g ( x )  and I ( s )  be 
given functions on 9- and 9, respectively. For x =  
( + e  - a ,  x,) and s = (s1; ., s,,), we define 

1 "  
g b )  = ; c g b l )  (2-9) 

(2 .lo) 
1-1 

1 "  
l ( s )  = - c I ( s , ) .  

1-1  

For convenience, we assume as in [7] that 
min g (x )  = min I ( s )  = 0. (2.11) 
X E S  S € 9  

Definition 4: A number R > 0 is an achievable rate under 
input constraint r and state constraint A if for any c > 0, 
6 > 0, and sufficiently large n, there exist codes with 
codewords xl, - e ,  x N ,  each satisfying g( x i )  I r, and such 
that 

1 I 
- logN> R - 6 ,  rnax S(s) IC. (2.12) 
n s: /(s) 5 A 

The largest of such achievable rates is called the capacity of 
the AVC under input constraint r and state constraint A; it 
is denoted by C( I?, A). 

If r 2 g,, = max,,,g(x) resp. A 2 I,, = rnax,,, 
l ( s ) ,  then the input resp. state constraint is inoperative. 
Thus C( gmU. A) denotes the capacity with state constraint 
A and no input constraint, while C(T, lmJ denotes the 
capacity with input constraint r and no state constraint. 

The capacity of the AVC under state constraint A may 
be positive even for symmetrizable (or symmetric) AVC's. 
Indeed, for the existence of codes with codewords of type 
P satisfying (2.12) for some R > 6, the crucial question is 
whether A is larger or smaller than 

A , ( P )  = min P ( x ) U ( s l x ) l ( s )  (2.13) 

where 9 denotes the set of all channels U: 95 --* 9' satisfy- 
ing (2.7). Clearly, A,( P) is a continuous function of P if 
Q # C#J, i.e., if the AVC is symmetrizable and A,( P) = bo 

for a nonsymmetrizable AVC. Lemma 1 yields, under state 
constraint A, that no code with codewords of type P 
satisfying A o ( P )  < A can be ''good." On the other hand, 
if A , ( P )  > A, Theorem 2 asserts that good codes do exist. 

Lemma I :  Any code of block length n with N 2 2  
codewords, each of type P, with A,( P) < A, has 

u E x E S S  €9 

2 N-1 1 lm, 
2N n ( A  - A ~ ( P ) ) ~  

max i ? ( s ) > - - -  
s: I ( s )  I A 

In particular, for any c < 1/2, 
2 

max i ? ( s ) > r ,  i f N r -  
1-2c '  s: /(s) s A 

4 L  
n r  

(1 - 2 ~ ) (  A - A,( P))' 
To describe our main result for state constraint A, let us 

denote the set of joint distributions Pxsr E W, with El( S) 
I A by VJA), where q 2 0. Then %,(A) is the set of joint 
distributions as in (2.5) for which El( S) s A. 

For any distribution P on 95, and A > 0, we define 

I ( P , A )  = min I (  x A Y). (2.14) 
Y: Pmv E Vo( A )  

for some S, with Px - P 
Lemma 2: For any A > 0, S > 0, and c < 1, there exists 

no such that for any code of block length n 2 no with N 
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codewords, each of type P ,  
1 
- log N 2 Z (  P , A )  + 6 
n 

implies max e ( s ) > z .  
s:/(s) 5 A 

The following Theorem 2 is our main technical result. 
Informally, it asserts that if A , ( P )  > A, then Z(P, A), the 
largest coding rate allowed by Lemma 2, is indeed achiev- 
able under state constraint A by codes whose codewords 
are all of type P .  In fact, this holds even with an exponen- 
tially decreasing probability of error. 

Theorem 2: Given A > 0 and arbitrarily small a > 0, 
/3 > 0, 6 > 0, for any block length n 2 no and for any type 

A,( P )  2 A + a,  min P ( x )  2 p, (2.15) 

there exists a code with codewords xl; a ,  x N ,  each of type 
P, such that 

P with 

X € % -  

1 I 
- log N > I( P, A )  - 6, 
n 

max ~ ( s )  I exp( - ny) (2.16) 

where n o  and y > 0 depend only on a, B, and 6, and the 
given AVC. 

The proof of Theorem 2 is similar to that of Theorem 1, 
replacing %?,, by %?,,(A) in the definition of the decoding 
rule. 

The following result on capacity under input constraint 
I' and state constraint A is a facile consequence of Theo- 
rem 2. For notational convenience, we define 

g ( p ) =  c p ( x ) g ( x ) ;  (2.17) 

s: /(s) 5 A 

X € T  

We know that the random code capacity of the AVC 
under input constraint r and state constraint A is 

C,(T,A)= rnax I ( P , A )  (2.19) 
P :  g ( p )  I r 

(cf. [7, theorem 11 where the random code capacity was 
denoted by C(r, A)). In particular, the random code 
capacity under state constraint A and with no input 
constraint (obtained by setting r = g,,) is maxp Z(  P ,  A). 
In either case, if the maximum is not achieved by an input 
distribution P satisfying A o ( P )  2 A, then the capacity 
(for deterministic codes) is strictly smaller than the ran- 
dom code capacity, while still being positive if the hy- 
pothesis of Theorem 3 part 2) (or of the Corollary part 2)) 
holds. This is illustrated by Example 2 in Section IV. 

111. PROOFS OF MAIN RESULTS 

For notational convenience, joint types of length-n se- 
quences will be represented by joint distributions of dummy 
random variables. Then if, for instance, X, S,  Y represents 
a joint type, i.e., Pxsy = Px,s,y for some x E I", s E SP", 
Y E  q", we write rx= {x: X E  3", P,= P x } ,  r X y =  

X E ~ " ,  S E ~ ' " ,   YE^", P x , s , ~ = P x s , } ,  etc. Similarly, 
we use self-explanatory notation for sections of T ~ ~ ,  T ~ ~ ~ ,  

{(x, y ) :  x E T", y E gn, Px.y = Pxy}, Txsy = {(x, s, Y ) :  

etc.; for example, Ty&) = { y :  (x, y )  E T x y } ,  T Y , X S ( X ,  .) 
= { y :  (x, s, Y )  E T x s y } ,  etc. 

We state below as facts a few basic bounds on types (cf., 

Fact I: The number of possible joint types of sequences 

Fact 2: We have 

e.g., Csiszhr-Korner [4]). 

of length n is a polynomial in n. 

then we have ( n  + 1) - I T '  exp { n ~ (  X >  1 I 1 ~ ~ 1  I exp{ n ~ (  x) 1, 
if T~ f 4: g(x) = g( P,) for every x E 3". (2.18) 

Theorem 3: For any r > 0, A > 0, 

1) c(r,A) =o ,  

The case when maxp, g ( p ) s r  A o ( P )  = A remains un- 
solved; it appears likely that C(r, A )  = 0. However, at 
present this can only be proved for special cases, cf. the 
remark following the proof of Theorem 3. 

For the capacity under state constraint A and with no 
input constraint, i.e., for C( g,,, A), Theorem 3 yields the 

Corollary: For any A > 0, with A, denoting maxp 
following. 

AO(P), 
1) C(  gm, A )  = 0, if A, < A;  
2) C ( g m , , A ) =  max I ( P , A )  i f A o > A .  

P :  A , ( P )  2 A 

where Px X V denotes the distribution on 9- X with 
probability mass function Px(x)V( y l x ) .  

The set of codewords xl,* -, x N  used in proving our 
main results is any set with the properties stated in the 
following lemma. We prove in the Appendix that a ran- 
domly selected codeword set will possess these properties 
with probability arbitrarily close to 1. We remark that 
Lemma 3 does not require the codewords to be distinct 
(although in our actual application this could be assumed). 

Lemma 3: For any z > 0, n 2 no(€) ,  N 2 exp(nz), and 
type P ,  there exist codewords xl,- . - ,  x N  in I", each of 
type P ,  such that for every x E I", s E 9'", and every 
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joint type P X x j S ,  upon setting R = l /n  log N, we have 

l{j: ( X . ~ j P ) E 7 , X ’ S } I  

I exp (n( I R - I( X’A XS) I + +  c ) )  (3.1) 
1 
N - l { z :  ( ~ ~ , ~ ) ~ 7 ~ ~ } I 1 e x p ( - n c / 2 ) ,  

i f I ( X A S ) > e  (3.2) 
and 
1 
- I { i: ( x i ,  x j ,  s )  E T x X S  for some j +  i }  I I exp(- nc/2), 

if I ( X A  X ’ S ) - I R - I ( X ’ A S ) I + > c .  (3.3) 

N 

In addition to Lemma 3, we will need the following 
lemma which establishes the inambiguity of the decoding 
rule in Definition 3. 

Lemma 4: If the AVC is nonsymmetrizable and p > 0, 
then for a sufficiently small 9, no quintuple of random 
variables X, X’, S, S’, Y can simultaneously satisfy 

P x =  Px.= P with min P ( x )  2/3 (3.4) 
X € l  

PxsYEqqY Px*sYE*v (3.5) 
and 

I( X Y  A X‘lS)  I? I( X’Y A XIS’) I 17. (3.6) 
Proof: By the definition of qv in (2.4), the condition 

P,, E gq means that 

D(PXSYIIPX x p s  x W )  

Upon adding to this 
I (  XY A X ’ l s )  

we obtain 

c PX,SY(X, x’ ,  s, Y )  
x ,  x ’ ,  s. y 

p,x, ,y(x,  x ’ ,  s, Y )  
log I 2 D .  

W(YlX,  s ) P ( x ) P , . , ( x ’ ,  4 
Here, the left-hand side is the divergence of two 
distributions on I X I X 9’ X ’3, namely, of P x y S y  
and the distribution with probability mass function 
W ( y l x ,  ~ ) P ( x ) P ( x ’ ) P ~ , ~ , ( s l x ’ ) .  Projecting both these dis- 
tributions on I X I X X ,  the divergence does not in- 
crease. Hence we get 

D( Px,,IIP x P x V’) I 2 q  

W Y I x ,  x ’ )  = c W(YlX,  s)pSlx.(slx’).  

(3 -7) 
where P X P X V’ is defined by the probability mass func- 
tion P(x)P(x’)V’(yIx,  x’), with 

(3.8) 
S 

Since the variational distance between any two probability 
distributions is bounded above by the square root of their 
divergence times an absolute constant c (Pinsker’s in- 
equality [lo], cf. Csiszhr-Komer [4, p. 58]), it follows that 

c P X X ’ Y ( X ,  x’ ,  Y ) -  P(X)P(X’ )V(Y lX ,  x’)  I 
x .  x ’y  

I C &  (3.9) 
Commencing with the conditions PrSy E Vv and I( X’Y 
A XIS‘) I 11, we obtain in a similar manner that 

c IPxX’y(X,X’,Y)-  P ( X ) P ( X ’ ) ~ ( Y I X , X ’ )  I 
X , X ‘ . Y  

ICG (3.10) 
where 

V(YIX, X ’ )  = c W Y l X ’ ,  ~ ) p s l x ( s l x ) .  (3.11) 
S 

Comparing (3.9) and (3.10), we obtain that 

P ( x ) P ( x ’ )  I v( YIX, x’) - V’( YIX , x’) I 5 2cJ271 
X , X ’ , Y  

whence 

if m i n x , , P ( x ) 2 f i .  

that 
For a nonsymmetrizable AVC, some 5 > 0 exists such 

I c W Y l X ,  s )U , ( s lx ’ )  - c W Y l X ’ ,  s ) U , ( s l x )  I 
x , x ’ . y  s S 

> E  (3.13) 

for every U,: 3 --f 9, U,: I --f 9 (cf. Lemma A2 in the 
Appendix). In particular, for the choice of U, = PSlX. ,  
U, = Pslx,  (3.13) yields 

m’)x I ~ ( Y l X ,  x ’ )  - N Y l x ,  x’)  I2 5 ,  

t2P4 

(3.14) 
x , x  . y  

which contradicts (3.12) if 

q < - .  
8c2 

Proof of Theorem 1: The necessity of nonsymmetriz- 
ability for C > O  is well-known. In fact, as Ericson [9] 
indicates, an idea of Blackwell et al. [3] leads to the 
conclusion that for a symmetrizable AVC, every code with 
N 2 2 codewords has 

N - 1  
max ~ ( s )  2 - (3.15) 

S C Y “  2 N  * 

More specifically, this follows from (3.29) in the proof of 
Lemma 1 below. It is also well-known (and is a conse- 
quence of Lemma 2 with A = lmm) that C I maXp I ( P ) .  

As observed after the statement of Theorem 1, nonsym- 
metrizability implies that I( P )  > 0 for every strictly posi- 
tive P .  Thus it remains to establish the hard part of 
Theorem 1, namely, that for a nonsymmetrizable AVC, 
max I( P )  is an achievable rate. To this end, since I( P )  is 
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a continuous function of P ,  it suffices to prove the follow- 
ing Lemma 5 ,  which is our first key result. 
Lemma 5: Given any nonsymmetrizable AVC and arbi- 

trary /3 > 0, 6 > 0, for any block length n 2 no and any 
type P with min P ( x )  > 8, there exists a code with code- 
words xl,- - -, xN, each of type P ,  such that 
1 
- log N > I (  P )  - 6 ,  max Z(s)  < exp( - nu). (3.16) 

Here no and y > 0 depend only on the given AVC, and on 
/3 and 6. 

Proof: Let xl,. e ,  xN be as in Lemma 3, with R = 
l / n  log N satisfying 

2 
3 

n S E 9 "  

I (  P ) -  6 < R < I (  P ) -  -6 (3.17) 

and with c (from Lemma 3) to be specified later. Let the 
decoder r#~ be as described in Definition 3. Lemma 4 
provides that this $I is unambiguously defined if q is 
chosen sufficiently small. In fact, if for some y E g" and 
some i #  j, both x i  and xJ satisfied conditions 1) and 2) 
in Definition 3, then some s and s' would exist, with the 
joint types of ( x I , x , , s , s ' ,  y) being represented by the 
dummy random variables X, X', S, S', Y (i.e., ( x i ,  xJ,  
s, s', y) E 7xx.ss.y) that satisfy (3.4), (3.9,  and (3.6) 
simultaneously. This contradicts Lemma 4. 

To establish (3.16), fix any s E Y", and observe first by 
(3.2) and Fact 1 that 

I (number of joint types) - exp ( - nc/2) 
I exp( - nc/3). (3.18) 

(All bounds in this proof are valid for n larger than a 
suitable threshold no,  which depends on E.) 

Hence to obtain an exponentially decreasing upper 
bound on 

1 N  1 N  
~ ( s ) = -  e ( i , s ) = -  W " ( y I x , , s ) ,  

1 - 1  r= l  y :  cp(y)+r  

(3.19) 

it suffices to deal with only those codewords x i  for which 
( x i ,  s) E 7xs with I (  X A S) I c. Then, for Pxsy 4 V,, (cf. 
(2.4)), we have 

W x s r l l P x s  x W )  = ~ ( P x s , I I P x X  ps x w- W A  S )  

c W"( YIxr,  4 exP { - nD(PxsrllPxs x w)) 

> O - - E ,  

and thus by Fact 3, 

Y E ~ Y ~ x s ( x , , s )  

< exp { - n ( q - c ) }  . 
Hence by Fact 1, 

Next notice that if Px, , s , yEV, ,  and + ( y ) # i ,  then 
condition 2) of Definition 3 must be violated. Let us 
therefore denote by 9,, the set of all joint distributions 
P,,,, such that 1) Pxsy E W,,; 2)Px,s.y E V,, for some S'; 
and 3) Z(XY A X'lS) > q. Then it follows that 

y :  ( X , . S * Y ) = V v  Pxrsv E 9, 

where 

c W " ( y l x , , s )  2 c e x r s y G , 4  (3.21) 

b(Y)'I  

exx,s,(i ,  4 = c W"( yIxr, s )  (3.22) 
Y :  ( X , . X , . S , Y ) E T X X X ' S Y  

and the summation in (3.21) extends to all joint types 
Pxrsy E 9,, (of course, exrsy( i ,  s)  = 0 unless Pr = Px = 
P and Pxs = Px,, ,) .  

Combining (3.18)-(3.21), we have thus far obtained that 
Z( s ) I exp ( - nc/3) + exp { - n (q - 26)) 

for some j # I 

1 N  
+ -  c c ex,sy(i,4. (3.23) 

N i - 1 P ~ ~ , ~ ~  E 9, 

Before proceeding to bound exxtsy(i ,  s), we notice that it 
suffices to do so when Pxx8sy E 9,, satisfies 

Otherwise, by (3.3), 

Z ( x A  X ' S ) I ( R - z ( X ' A S ) l + + c .  (3.24) 

1 
- I { i :  ( x i ,  xi, s )  E 7xx,s for some j z i } I < exp ( - nc/2). 
N 
Since (xi, x,, s) E 7xx.s for some j # i is a necessary con- 
dition for exrsy( i ,  s) > 0 (cf. (3.22)), it follows from Fact 
1 that the contribution to the double summation in (3.23) 
of the terms with PxrSy E 9,, not satisfying (3.24) is less 
than exp( - r)c/3). 

Now from (3.22), 

OW"( YIX, ,  s). (3.25) 

As W " ( y l x , , s )  is constant for ~ E ~ ~ ~ ~ ~ ( x , , s )  and this 
constant is less than or equal to (17y,xS(xI,s)I)-1,  the 
inner sum in (3.25) is bounded above by  IT^^^^^^(^^, xJ, s)l 

s)I)-', which in turn is less than or equal to 
exp { - n( I(  Y A X'l XS) - c)} by Fact 2. Hence using (3.1), 
it follows from (3.25) that 

e x r S y ( i ,  s )  I exp ( - n [ Z(Y A X'IXS) 

- I R - I (  X' A XS) I+- 261 1. (3.26) 

To further bound e x r s y ( i , s )  when (3.24) holds, we dis- 
tinguish between two cases: a) R 5 Z(X' A S), and b) 
R > Z(X'A s). 

In case a), (3.24) yields 
Z(XA X'lS) Iz(xA X S )  I C ,  

W " ( y l x i , s ) I e x p { - n ( q - 2 c ) } .  (3.20) and hence, bycondition3)inthedefinitionof 3, 
Y :  px,,*,yev, Z(YA X'IxS)=Z(XYA x'lS)-Z(xA X'lS) 2q- -E.  



CSlSZ,&R AND NARAYAN: CAPACITY OF THE ARBITRARILY VARYING CHANNEL REVISITED 187 

Since now R I I (  X' A S )  I I(  X' A X S ) ,  it follows from 
(3.26) that 

exxtsy( i, s ) I exp ( - n (q - 3c) ) .  (3.27) 

In case b) we obtain from (3.24) that 
R > I (  x A xs ) + I (  X' A S ) - c 

= I ( x ' A  x S ) + l ( X A  S ) - c  

2 I ( X ' A  X S ) - c  

and hence 
IR - I (  x' A X S  ) I+ 2 R - I( x' A X S  ) - 6 .  

Substituting this into (3.26), it follows that for case b), 
e,,,. ( i, s ) I exp { - n ( I (  x' A X S Y )  - R - 36) ) 

- < exp { - n ( I (  X A Y )  - R - 3 ~ ) ) .  (3.28) 

Recall that PxXts, E 9,, implies, in particular, that 
P,,,,, E V,, for some S'. Thus by the definition of q,, (cf. 
(2.4)), Px,s,y is arbitrarily close to Px,,sttytt E %,, defined by 
Px,,s,,y = P x Ps, x W, if TJ is sufficiently small; then 
I( X' A Y) is arbitrarily close to I( x" A Y"), say, 
I( x' A Y )  2 I( X" A Y") - 6/3. Using the definition (2.6) 
of I( P )  and the assumption in (3.17), it follows that 

I (  x ' A  Y )  - R 2 I ( P )  - 6/3- R 2 6/3 

if 7 is sufficiently small and depends only on 6. Fixing the 
heretofore unspecified TJ accordingly (and small enough 
for the decoding rule to be unambiguous), (3.28) yields for 
case b) that 

e,,.,,(i,s)iexpj -n( 5 - 3 6 ) ) .  

By the observation made in the paragraph containing 
(3.24), we obtain from (3.23) upon using (3.27), the previ- 
ous bound, and Fact 1 that 

~ ( s )  I exp( - nc/4) 

if, for instance, c I min(71/4,6/10) and n is sufficiently 
large. As the bound holds uniformly in s E Y", the proof 
of Lemma 5, and thereby also of Theorem 1, is complete. 

Proof of Lemma 1: Consider any code with codeword 
set xl,- . -, x N  and decoder (p, where x, = ( x , ~ ;  e ,  x,,), 
i = 1,. ., N. For U E 9, Le., U satisfying (2.7), consider N 
9"-valued random variables SJ = ( S,l,. , S,,) with statis- 
tically independent components, where Pr { SJk = s } = 

U ( S ~ X , ~ ) .  Then for each pair ( i , j )  and every y =  
(yl; - e ,  y,) in dy", we have by (1.1) and the definition of 
S, that 

n 

EW"( YIxf, 5) n E W ( y k l x f k ,  ' J k )  
k = l  
n 

= n c W ( Y k l x , k ? s ) m x , k ) .  
k = l  S E S P  

On account of (2.7), it follows that 

EW"( YIX, ,SJ)  = EW"( YlX,, S,),  

and hence by (2.1), for i # j ,  we have 

Ee( i ,  S,)  + Ee( j ,  Sf) 

= c E W " ( y l x , , S , ) +  c EW"(ylx, ,SJ 

2 EW"( Y l X 1 , S J )  =1. 

Y .  *P(Y)+' l  Y :  *(Y)+'J 

Y € W  

Using this fact and (2.2), we obtain 

1 N ( N - 1 )  N - 1  
2-. -- 

N 2  2 2 N  ' 
- 

whence it follows that 
N - 1  1 

EC(SJ) 2 - forsomejE { l ; . - , N }  
2 N  '4' 

(3.29) 

Suppose now that each codeword xJ is of type P where 
A o ( P )  < A, and let U E 9 attain the minimum in (2.13). 
Then using (2.10), 

and 

1 "  lHaX 
var/(Sjk) I -. varZ(Sj) = -5 n k = l  

Hence by Chebyshev's inequality, 

Pr { Z( S, ) > A } = Pr { f ( S, ) - El( S' ) > A - A ,, ( P ) } 

2 - Ao(P))-2.  (3.30) 

Since 

E F ( S , ) I  s: /(s) max s A e ( s ) + P r { / ( % ) > ~ } ,  

the lemma follows from (3.29) and (3.30). 

satisfying 
Proof of Lemma 2: First we show that for some S 

E I ( S )  I A(1-  7) (3.31) 
(with > 0 depending on 6 but not on P) and for 

px,,(x, $ 9  Y )  = p(x)p,(s)W(Ylx9 4, (3.32) 

I (  X A Y )  I I (  P, A )  + S/2. (3.33) 
we have 

In fact, let P,. achieve the minimum in (2.14), i.e., let 
I( X A Y*) = I ( P ,  A )  for P,,,, as in (3.32) with E f ( S * )  I 
A. Pick s o €  9 with f(s,,) = O  (cf. (2.11)), and define 
P,(s) = (1 - TJ)P, , ( s )  if s # so,  Ps(so) = TJ + (1 - 
q)Pst(so). Then (3.31) is clearly satisfied, and so is (3.33) 
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for a sufficiently small q, since I (  X A Y )  is a uniformly 
continuous function of the pair (P ,  P,) if P,, is given by 
(3.32). 

Now consider any code with codewords x,; a ,  x N  and 
decoder 9, and let S =  ( S , , . . - , S , )  be n independent 
repetitions of S as defined earlier. Then by (2.1), (2.2), 
(1 A), and the independence of SI,. e ,  S,, 

1 N  1 N  
N N 

1 N  n 

E C ( S )  = - E ( i , S )  = - c EW”( Ax,, s) 

- c c n EW(Y,IX,,J,). (3.34) 

r = l  y :  @ ( Y ) # I  r = l  

= 

r = l  y : + ( y ) + r / = l  

Introducing a discrete memoryless channel (DMC) { W,} 
defined by 

T i  

W,(YlX) = E W Y k  SI, (3.35) 
(3.34) yields that EZ(S) is equal to ZwF, the average 
probability of error when the given code is used on the 
DMC {W,} .  Since (3.31) implies, by (2.10) and 
Chebyshev’s inequality, that 

Pr { l ( S )  > A }  = Pr l ( S r )  > E l ( S ) +  qA 

it follows that 
max Z(s )>EZ(S) -P r{ l (S )>A}  

s: /(s) 5 A 
12 
max > e w s - -  

n q2A2 . (3.36) 

Finally, notice that (3.32) means that Y is connected 
with X by the channel W, defined in (3.35). Hence (3.33) 
implies, by the strong converse to the coding theorem for a 
DMC with codewords of type P (cf. Csiszh-Korner [4, 
corollary 1.4, p. 104]), that if all the codewords xl; . ., x N  
are of type P, then Z ws is arbitrarily close to 1 if l / n  log N 
2 I ( P ,  A)  + 6 and n is large enough. This and (3.36) 
complete the proof of Lemma 2. 

Proof of Theorem 2: As mentioned in Section 11, we 
now use a slightly modified decoding rule, replacing qq in 
Definition 3 by 

Vq ( A )  = { Pxsy: Pxs E qq, El ( S ) I A } . 
To prove that this modified decoding rule is unambiguous 
if the codewords are of type P satisfying (2.15), we have to 
establish that no quintuple of random variables X ,  X‘,  S ,  
S’, Y can simultaneously satisfy 

P x = P x . = P  wi thA, (P )>A+a ,  m i n P ( x ) > p  
X € %  

( 3 . 4 )  

PXSY E +qN, PX’S‘YE q N ,  (3.5’) 

and (3.6). The proof is identical to that of Lemma 4, with 
the only difference being that now (3.13) need not hold for 

every U,,U,. This does not, however, affect the proof 
because by the second assertion of Lemma A2, (3.13) does 
hold subject to the constraint (A.14) which, by assump- 
tions (3.4‘) and (3.57, is satisfied for U, = PSlx. ,  U, = Ps,x. 

Using the codeword set of Lemma 3 and the decoder 
specified earlier, the remainder of the proof of Theorem 2 
is identical to that of Lemma 5 and is, therefore, omitted. 

Proof of Theorem 3: Part 1) follows immediately from 
Lemma 1. To prove part 2), we first claim that 

F ( a )  = max I ( P , A )  (3.37) 
P: g ( P ) s r - a  
A v ( P )  2 A + a  

is a continuous function of a in a sufficiently small 
neighborhood of 0, say ( -  q,  q ) .  To see this, observe that 
by (2.14), I (P ,  A )  is the minimum of a family of con- 
cave functions of P (since I(  X A y) is concave in P for 
P,, = P x P, x W for a fixed P,) and hence is itself a 
concave function of P. Similarly, A , ( P )  is also a concave 
function of P .  It then follows in a standard manner that 
F ( a )  is a concave function of a in the interval where 
{ P :  g ( P )  I r - a, A , ( P )  2 A + a} # $. The assumption 
maxp: g ( p ) s r  A , ( P )  > A implies that this interval con- 
tains 0 in its interior, establishng our first claim. 

Now for any a>O, let P* achieve the maximum in 
(3.37), and let 5 > 0 be small enough so that for every P 
with 

(3.38) 

I (  P ,  A )  differs from I(  P*, A)  = F(a)  by less than 6, and 
g ( P )  I r, A,( P )  2 A + a/2. If ,8 > 0 is small enough, 
there exists (for sufficiently large n) a type P satisfying 
(3.38), as also m i n , , , P ( x )  2 p. Then by Theorem 2 a 
code exists with codewords x l ; - - , x N ,  each of type 
P -thus satisfying g(  x,) I r -such that 

IP (4  - P * ( 4  I < $ 9  

X € X  

1 
- 10gN > I (  P ,  A )  - 6 > F( a) -26 

and max,, ,(s) I A Z(s) is as small as desired. Since F( a) is 
continuous at a = 0, this proves the forward part of Theo- 
rem 3, i.e., the achievability of R = F(0) under input 
constraint r and state constraint A (cf. Definition 4). 

To prove the converse, i.e., that no R > F(0) is an 
achievable rate, observe that Lemmas 1 and 2 immediately 
imply that no R larger than 

max I ( P , A )  
P: g ( p )  5 r 

A v ( P )  2 A - (I 

can be achieved for any a > 0. Since the last maximum 
I F( - a) (cf. (3.27)), the desired converse follows from 
the continuity of F at a = 0. 

Remark: While the case maxp, g ( p ) 5 r  Ao(P) = A re- 
mains unsolved in general, for certain AVC‘s it is easily 
seen that C(r, A)  = 0 in this case, too. This occurs if the 
set % of all channels satisfying (2.7) is the convex hull of a 
set of deterministic channels, i.e., of 0-1 matrices. In fact, 
the minimum in (2.13) is then attained for some 0-1 
matrix U, and in the proof of Lemma 1 the state sequences 
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Sj will now be nonrandom, say Sj = si. Then (3.29) reduces 
to Z(s,) 2 ( N -  1)/2N, where l ( s , )  = A , ( P )  (rather than 
El(%)  = A o ( P ) ) .  Thus codes with codewords of type P 
cannot be “good” under state constraint A, even when 
A,( P) 5 A. 

IV. EXAMPLES 

Two simple examples are considered in this section. In 
both examples, the input alphabet and the set of states are 
binary, i.e., .!T = Y = {O,l} ,  and the channel output is a 
deterministic function of the input and the state. Further- 
more, the functions g ( x )  = x and l ( s )  = s are used in the 
input and state constraints in either example. Thus g(x) 
and l ( s )  are the respective normalized Hamming weights 
of the binary n-sequences x and s. 

Example I :  Let GY= {0,1} and let W ( y l x , s )  =1 if y =  
x + s  modulo 2, and 0 otherwise. This is a symmetric 
AVC, and hence C =  0. Further, since P X s y ~ ( & O  (cf. 
(2.5)) if and only if 

X and S independent, (4.1) 

we obtain that Z ( P )  = 0 for every P (cf. (2.6)), as Ps = 
(1/2,1/2) in (4.1) yields I( X A Y )  = 0. Thus the random 
code capacity of this AVC is also equal to zero. 

To determine the capacity C(T, A )  under input con- 
straint r and state constraint A, we first evaluate A , ( P )  
(cf. (2.13)). For this AVC, (2.7) is satisfied if and only if U 
is symmetric, i.e., 

Y = X +  S mod 2, 

and thus for P = (1 - p, p) ,  (2.13) yields 

A , ( P ) =  min [ ( l - p ) u + p ( l - u ) ]  = m i n ( p , l - p ) .  
O S U l l  

(4 4 
By Theorem 3 part l), and the remark following the proof 
of Theorem 3, we have C(r, A)  = 0 if maxp: g ( p )  r A o ( P )  
I A. Since g ( P )  = p ,  by (4.2) we get 

C( r ,  A )  = 0, if A 2 min (r,1/2).  (4.3) 

For A < min( r, 1/2), C( r, A )  is given by Theorem 3 part 
2). To determine it explicitly, we must find Z(P,  A)  (cf. 
(2.14)). 

For Px = P = (1 - p,  p) ,  Ps = (1 - q, q )  in (4.1), write 

11( p ,  4) = I( x A Y )  = H ( Y )  - H ( Y I X )  

= h ( P  * 4 ) -  h ( q )  (4.4) 

where p * q = p q  + (1 - p)(l - q) ,  and h( t )  = - t log t - 
(1 - t)log(l - t )  is the binary entropy function. By stan- 
dard properties of mutual information (cf., e.g., Csiszhr- 
Korner [4, p. 50, lemma 3.5 (d)]), Z,(p,q) is concave in p 
and convex in q. For a fixed p, Zl(p,q) is minimized 
when q = 1/2; hence it is a decreasing function of q for 

0 5 q I 1 / 2 .  Since E l ( S )  = q, it follows from (2.14) that 

I ( P , N  = m i n I , ( p , q )  
q s A  

if A <1/2 
if A 21/2 .  (4.5) 

= rp3 A ) ,  

Now Theorem 3 part 2) gives, by (4.2) and the fact 
g ( P )  = P,  

C ( r , A ) =  max Zl(p ,A) ,  ifA<min(I’, l /2).  
A s p s r  

Since Z l ( p , q ) ,  defined in (4.4), is concave in p and 
maximized when p =1/2 (for any fixed q) ,  we finally 
obtain that 

Z[rl /2 ,A)=l - -h(A) ,  if A<1/21r 

if A < r 11 /2 .  
Z1( r , A )  = h ( *A ) - h ( A ) ,  

( 4 4  

Notice that the random coding capacity under input con- 
straint r and state constraint A is, by (2.19) and (4.5), 

if A 21/2 

if A <1/2, r <1/2. 
cr(r, A )  = Z1(1/2, A ) ,  if A <1/2 I r (4.7) (“ w ,  A) ,  

Thus the capacity under input constraint I’ and state 
constraint A is equal to the corresponding random code 
capacity, except for the case r I A < 1/2 when C(r, A )  = 
0 while Cr(r ,  A )  > 0. 

As a particular case of (4.6), the capacity of the AVC in 
this example under state constraint A <1/2 and with no 
input constraint equals C(1, A )  =1- h ( A ) .  A remarkable 
feature of this result is that this capacity is the same as 
that of a binary symmetric channel (BSC) with crossover 
probability A. Since the AVC in this example is determin- 
istic, the error probability e ( i ,  s) (cf. (2.1)) is either 0 or 1 
for any code, any message, and any state sequence. Hence 
F(s), defined in (2.2), is simply the average number of 
incorrectly decoded messages when the state (or “noise”) 
sequence is s. Notice that the expected value of this 2(s) 
over the ensemble of ‘‘noise vectors” s with independent 
bits, each of which has probability A of being equal to 1, is 
just the average probability of error of the given code over 
a BSC with crossover probability A. By the standard 
coding theorem for a BSC, this can be made arbitrarily 
small while maintaining a rate close to 1- h ( A ) .  The 
result we have established says that the same rate is 
achievable even under the stronger requirement that the 
fraction of incorrectly decoded messages be small not only 
in expected value over an ensemble of noise vectors s but 
for every s individually, subject to I ( s ) I  A (where, of 
course, s is unknown both to the sender and decoder). 

It is instructive to point out that, for the AVC in this 
example, the problem of determining the rn-capacity (rather 
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than the a-capacity) under state constraint A is equivalent 
to a basic unsolved problem of coding theory. The m- 
capacity of an AVC under state constraint A is the largest 
R such that for every c > O  and 6>0, codes exist with 
l /n  log N > R - 6 and m a , ,  e ( i ,  s) < c. 
For a deterministic AVC the last condition means that 
e ( i , s )  = 0 for every message i (rather than for “most 
messages” as before) and for every s with l ( s )  I A. Thus 
the rn-capacity of the AVC in this example under state 
constraint A equals the maximum rate of binary codes 
such that the normalized Hamming distance of any two 
codewords is larger than 211. 

A maxl 

This means that C(T, A )  is positive but smaller than the 
corresponding random code capacity C,(I‘, A )  = C, = 1/2 
if I‘ > A > 1/2. In particular, the capacity under state 
constraint A > 1/2 and no input constraint is positive but 
less than the corresponding random code capacity. 

On the other hand, if A I 1/2, I‘ > A, then C(r, A )  = 
C,(r, A).  To verify this, we need only establish that the 
input distribution = (1 - d ,  p )  achieving the maximum 
in (4.12) satisfies p 2 A. This will follow if we show that 
I ( P ,  A )  is an increasing function of p in the interval 
0 I p <1/2 if A <1/2; thus by (4.11) it suffices to show 
that I,( p ,  q )  is an increasing function of 0 I p <1/2 if 
q 5 1/2. This follows by differentiation. In fact, as 12( p ,  q )  
is concave in p ,  it suffices to check ( i? / i?p ) I , (p ,  q )  at 
p = 1/2, which is seen to be nonnegative if q I 1/2. 

Example 2: Let CY = {0,1,2}, and let W(ylx, s) 1 1  if 
y = x + s, and 0, otherwise. This is the simplest example 
(due to Blackwell et al. [3]) of an AVC with C=O and 
positive random code capacity. 

To determine C( I’, A), we may assume that A < 1. Since 
for this AVC, only U equal to the identity matrix satisfies 
(2.7), we obtain from (2.13) that A,( P )  = p for any P = 

(1 - p ,  p ) .  Also, since g(  P )  = p ,  by Theorem 3 and the 
remark following its proof we have 

Now observe that Pxsv E go (cf. (2.5)) iff 

Y = X+ S ,  X and S independent. (4.9) 
Then 

I ( X A  Y )  = I , ( P 4  
= H ( P d 1 -  P N -  4 ) ,  P + q - 2 P q ) -  w 

(4.10) 

if P,u = P = (1 - p ,  p ) ,  Ps = (1 - q, q) ,  and from (2.14), 

(4.11) 

As in Example 1, it is seen that I,( p ,  q )  is concave in p 
and convex in q. Further, we can see by differentiation 
that p* = 1/2, q* = 1/2 is a saddle point of I,( p ,  q). Thus 
the random code capacity, without constraints, is 

1 
C, = max min I,( p ,  q )  = I,( p * ,  q*) = -. 

The random code capacity with input constraint r and 
state constraint A is 

P 4  2 

C,( I‘, A )  = max I (  P, A )  = max min Z2( p ,  q ) ,  (4.12) 
p s r  P s r q s A  

and thus C,(I’, A)  = C, =1/2 if I‘ 21/2,  A 21/2.  
Observe that I ( P ,  A)  is a concave function of p since 

by (4.11) it is the minimum of concave functions. If 
A 2 1/2, this function is maximized at p* =1/2. Hence 
the maximum in (4.8) is attained at p = A if r > A > 1/2. 
Then writing PA = (1 - A, A), we get 

q s  A 

V. DISCUSSION 

Ahlswede [2] demonstrated that the capacity C of an 
AVC for (deterministic codes and) average probability of 
error is equal either to its random code capacity or else to 
zero. A necessary and sufficient computable characteriza- 
tion of AVC‘s for deciding between these alternatives was 
not available. We have established that nonsymmetrizabil- 
ity, stated by Ericson [9] as a necessary condition for 
C > 0, is in fact both necessary and sufficient; for a 
nonsymmetrizable AVC, C equals its random code capac- 
ity. Our proof does not rely on Ahlswede’s [2] theorem. A 
good codeword set is selected at random, using a bounding 
technique of Dobrushin-Stambler [SI. A subtle decoding 
rule, similar to that in Csiszhr-Korner [5], leads to an 
adequate bound on error probability. 

Employing the same method we have also determined 
the AVC capacity when constraints are imposed on the 
state sequences. Now symmetrizability need no longer 
render C = 0. Instead, the crucial factor is whether or not 
A, = m a p  A,( P) (cf. (2.13)) is larger than the state con- 
straint A. As remarked in [7], Ahlswede’s elimination 
technique [2] does not apply when state constraints are 
present unless the capacity without state constraints is 
positive. Our results demonstrate that under a state con- 
straint the capacity may be positive but less than the 
corresponding random code capacity. Similar results have 
also been obtained for the case where constraints are 
additionally imposed on the transmitted codewords. 

Our results resolve as a special case a weakened version 
of a fundamental problem of coding theory. This unsolved 
problem concerns the determination of the largest asymp- 
totic rate of binary codes which enables a codeword to be 
correctly recovered, regardless of which error vector of 
normalized Hamming weight A is added to it (mod2). If, 
instead, an arbitrarily small fraction of the codewords is 
allowed to be incorrectly decoded, we have shown that the 
largest achievable rate is equal to the capacity of a BSC 
with crossover probability A. 

In this paper the input and state constraints are “peak 
constraints” in the sense of [7]. In [7], for random codes, 
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“average constraints” were also considered where “average 
state constraint A” meant that the state sequence could be 
random subject to E((l/n)Zy=ll(Si)) I A. The same could 
be done for deterministic codes, too. Indeed, for nonsym- 
metrizable AVC‘s the results are completely analogous to 
those in [7]. For symmetrizable AVC‘s, however, a diffi- 
culty in determining the c-capacity under “average state 
constraint A” arises due to the fact that while a sym- 
metrizable AVC has zero capacity, its c-capacity may be 
nonzero for E >1/2. 

We conclude with a comment on another aspect of the 
relation of our work to that of Ahlswede [2]. Ahlswede has 
established by his elimination technique that the capacity 
of an AVC for codes with a stochastic encoder (and 
deterministic decoder) and maximum probability of error 
is the same as its capacity for deterministic codes and 
average probability of error criterion. We remark that even 
though the elimination technique does not apply in the 
presence of state constraints, the said result nevertheless 
remains true. To see this, a minor modification of our 
proof yields the existence of codeword sets, as in Theorem 
2, with the additional property that the message set 
{l; - e ,  N }  can be partitioned into subsets A,; - -, A,,,, of 
sizes 2: exp(nr) such that for each subset, 

1 
max - e ( i , s )<exp( -ny) .  

S : Q ~ ) < A  IAk I  j f A ,  

The resulting code can then be modified to a code with a 
stochastic encoder and with a message set {l; e ,  W } .  
Each k E { 1, .  . . , N’} is encoded by a codeword randomly 
selected from A,. Clearly, this new code will have maxi- 
mum probability of error less than exp( - ny) for every 
s E 9’” with 1 ( s )  I A. 

APPENDIX 

We now prove Lemma 3 and another technical lemma referred 
to in Section 111. We will show that N = exp(nR) randomly 
selected codewords will possess, with probability close to 1, all 
the properties stated in Lemma 3. Inequalities (3.1) and (3.2) are 
a consequence of Csiszhr-Korner [5,  lemma 11; nevertheless, for 
completeness we give a simple proof. To establish (3.3), Chernoff 
bounding has to be applied to dependent random variables as in 
Dobrushin-Stambler [8]. The Chernoff bound required by us is 
stated as Lemma Al, and is related to [8, lemma 91. 
Lemma A l :  Let Z,; . ., ZN be arbitrary random variables, 

and let f,(Zl,.-.,ZI) be arbitrary with O s f , s l ,  i= l ; - . ,N.  
Then the condition 

E[fi(Zl,...,Z,)lZl,...,Z, - 1 ]  s a  a.s., i = l ; . . , N ,  

(All 

implies that 

sexp{-N( t -a loge)} .  (A2) 

Of course, (A2) is a nontrivial bound only for t > a log e. 

Proof: We observe that 

1 
(by Markov’s inequality) 

N - 1  

=exp(-  Nt )E exp f , ( Z , ; . . , Z , )  [( i = l  

. E( exp f, ( z1 , +  . . , Z,  ) lz,, . 1 ,  z,- , I] . (A31 

Since 0 < f I 1 implies that expf s 1 + f (recall that exponen- 
t i a l~  are to the base 2), we obtain by assumption (Al) and (A3) 
that 

E( expf/V( 2 1 , .  . . ?  z, ) p, >. . ., 2, - 1 ) 
I + E( fN( z1 3 ’  . ’ zN)lzl 7 .  ’ ‘ 3 zN- l )  

sl+ a I eo = exp( a loge). (A41 
By substituting this into (A3) and repeating the procedure in 
(A3), (A4) ( N  - 1) times, we obtain (A2). 

Proof of .Lemma 3: Let Z, , . . . , ZN be independent random 
variables, each uniformly hstributed on T ~ .  First fix X E T ~ ,  

s E Yn,  and a joint type Pxrs with Pxs = P,,,, Px. = Px. Apply 
Lemma A1 to 

(as the random variables defined in (A5) are independent and 
identically distributed, the full strength of Lemma A1 is not 
needed at this point). By Fact 2 in Section 111, the condition (Al) 
is now fulfilled with 

where the last step follows because H( X’) = H( X). Setting 
1 
N 

t = - exp ( n (I R - I (  X’ A 1s)  I + + C )  ) 
where R = n- l  log N ,  we see that N(t - a loge) 2 (1/2)exp(nr) 
if n 2 nl(c) ,  where 

nl (c )  = min n: ( n  +l)l”’loge< - exp( n c )  . (A6) { 2 l )  

Then (A2) results in 

Pr ( I { j :  Z, E T ~ , ~ ~ ~ (  x, s)} 1 > exp [ n( I R - I( X’ A X S )  1 ++  C ]  ) 

(A7) 
1 

< exp [ - exp( P I C ) ] .  
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By the same argument, replacing T ~ , ~ ~ ( x , s )  by T ~ ~ ~ ( s )  in (A5), Hence by (All), 

<exp [ --exp(nr) ; ] . (‘48) 

In particular, if I( X’ h S) I E (and R 2 E as postulated), from 
<2exp[ - i e x p ( y ) ] .  1 (A8) with ~ / 2  replacing E, we obtain for n 2 n,(c/2) that 

By symmetry, the same holds when “for some j < i” is replaced 
by “for some j > i.” Thus we finally obtain that 

The doubly exponential bounds (A7) and (A9) will suffice to 
establish (3.1) and (3.2). To obtain (3.3), we proceed as follows. 
Let Ai denote the set of indices j < i such that z j  E T ~ ~ ~ ( s ) ,  
provided their number does not exceed exp { n ( 1  R - I( X’ A 
S)l’ ) + (~/4)};  else, let A; = +. Further, let 

if I ( X h  X’S)>IR-I(X’AS)I++r and n>n1(c/4). 
Now the proof is completed in the standard manner. As the 

total number ,of a l l  possible combinations of sequences x E rX,  
s E 9’“ and joint types PXXrs grows only exponentially with n, 
the doubly exponential probability bounds (A7), (A9), and (A12) 
ensure that with probability close to 1 all the inequalities 

I { j :  z, E TXlXS( x,  s)} I I exp [ n( 1 R - I (  X’ A X S )  I + +  r ) ]  

if I (  X ’ A  s) 2 E 

ifz, E U,EA,%(X’S(Z,’S); (A101 

Then by (A8), applied with c/4 instead of E and for n 2 nl(L/4), 
we have 

Pr { f f, (z,,. . . ,z, + 1 { , : z, ErXIXtS ( 4 , s )  for s o m e w  } 1 

i i: otherwise. 
fr(Zlr.”,Z,) = 

1 n r  - I {  j :  z, E T ~ ~ ~ ( s ) }  I I exp( - 1) 
I =1 

and 

By the independence of the Z, and by Fact 2, we obtain from 
(A10) that 

n r  
I exp( - i) , if I (  X h  XIS) > 1 R - I (  X r h  s) I + +  c ,  

Supposing that I( X h X’S) > I R - I( X’ h S) I + + c, (Al) holds 
with 

Then (M), with t = exp( - n r / 2 )  and for n 2 n,(~/4)  (cf. (A6)), 
yields that 

hold simultaneously if n is sufficiently large, n 2 no(€). Any 
realization of the random N- tuple { Z,  , . . . , 2, } simultaneously 
satisfying all these inequalities is a proper choice for { xl,. . . , x N  } 
in Lemma 2. 
Lemma A2: For a nonsymmetrizable AVC, there exists 6 3 0 

such that for each pair of channels U, = 3 4 Y, U, = 3 4 9, 

(A13) 
Further, for any AVC and a > 0, there exists 6 > 0 such that 
(A13) holds for every U, and U2 for which a P can be found with 

c P(x)U,(slx)l(x) I A o ( P ) -  a 
x , s  

P( X ) & ( S ~ X ) [ (  X )  I A,( P) - a. (A14) 
x , s  

Proof: The maximum in (A13) does not change upon inter- 
changing the two sums and then x and x‘. Thus 

S 

where in the last step we used the assumption N 2 exp(nr). (A19 
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where U = (1/2)(U1 + U,). Notice that if U, and U, satisfy (A14) 
for some P, then it holds that 

P( x ) U ( S I X ) [ ( S )  _< A,( P) - OL. (A161 
X , S  

Denote the last maximum in (A15) by F(U) .  As a continuous 
function on the compact set of all channels U :  X + 9, F ( U )  
attains its minimum at some U*. If the AVC is nonsymmetriz- 
able, U* cannot satisfy (2.7), and hence F(U*) > 0. This proves 
the first assertion with 5 = F(U*). Further, by considering F(U) 
as a continuous function of (P, U )  ranging over the compact set 
of all pairs (P, U )  satisfymg (AM), we see that its minimum is 
attained for some (P*,U*).  As ( P * , U * )  satisfies (A16), U* 
cannot satisfy (2.7) (by (2.13)). Hence once again F(U*) > 0, 
completing the proof of Lemma A2. 
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